
International Journal of Computer Applications (0975 – 888)

Volume 47– No.5, June 2012

6

Steganography Detection using Functional Link Artificial

Neural Networks

ABSTRACT

Security in message transfer over the netwoek has been a
consistent challenge in the field of I.T. Cryptography is one of
very much spoken solution. Security of messages that are

being transferred is very important and experts have lot of
work to think of new techniques and approaches in
cryptography. At the same time cryptanalysts also have very
important job to detect and reveal and then decode the coded
messages. Steganography is another additional method for
better secure up messages which goes hand by hand with
cryptography, and reveal of such a message is not easy. In this
paper, we presented a new approach known as Steganography
detection using Functional Link Artificial Neural Networks

that deals with neural network models that are able to detect
Steganography content coded by a program Outguess. Neural
network methods are flexible in learning various typical
problems. In this paper „Functional Link Artificial Neural
Network‟ is used which is one of the methods for training a
neural network. Results in this project show that used model
had almost 100% success in revealing Steganography by
means of Outguess.

General Terms

JPEG Snoop, Legendre polynomials, Chebyshev polynomials,
Power series, Ubuntu.

Keywords

Cryptography, Steganography, Neural Network, Outguess,
Functional Link, Artificial Neural Network

1. INTRODUCTION
The purpose of Steganography[1] is to hide the very presence
of communication by embedding messages into innocuous
looking cover objects, such as digital images. The secret
message is embedded in the original cover image by making
slight modifications to it. As a result, the stego image is
obtained. If you see such a picture, normally you do not
recognize that there is a secret message. And this is the point
Hacker will go through and will not give the attention to the

message. Therefore it is necessary to have a method for its
detection. It is important to know the fact that when a picture
is coded using OutGuess, no change can be observed between
the uncoded and coded image to the naked eye. Because there
is no change in the frequency of the image. So, a procedure
should be followed to detect such an image. When an image is
coded, the hidden data is actually present in the least
significant bits of the image. By this we can say that if we
calculate the Huffman coding of the image there is a change

in the pattern of the AC and DC bits for a coded and uncoded
image. Using this concept, we feed the neural network with
the Huffman code of the uncoded images i.e, the data set to be
given to train the neural network is made of Huffman codes.

After training the neural network with uncoded images, it
identifies a coded image by showing a variation in its output.
A neural network gives an output close to zero (0) if the
image is uncoded. If the image is coded, the output is close to
one (1)

2. EXISTING SYSTEM
Outguess preserves statistics based on frequency counts. As a
result statistically tests based on frequency counts are unable
to detect the presence of steganographic content. Results are
unable to reveal steganography content because Out Guess
finds out maximal length of the message before inserting into
image. There is lot of literature available in this field, some of
them are „Detection of Steganography Inserted by OutGuess

and Steghide by Means of Neural Networks‟ by Oplatkova,
Z. Holoska, J. ; Zelinka, I. ; Senkerik, R.[10] , „Using an
Ariticial Neural Network to Detect the Presence of
Image Steganography‟ by Chandrababu, Aron [11], New
Steganalysis Method using GLCM and Neural Network by Sedighe
Ghanbari, Manije Keshtegary, Najme Ghanbari [12]. But there is no such
software which detects Steganography done by Out Guess at
present.

3. PROPOSED SYSTEM
We use Functional Link Artificial Neural Network to detect
the coded images. The FLANN architecture uses a single
layer feed forward neural network and to overcome the linear
mapping, functionally expands the input vector. We obtain
data for training sets of neural networks using JPEG snoop.
JPEG snoop is used to create tables of Huffman‟s coding.
Each column from the table was taken and given to a row one

after one. With the help of Huffman‟s coding. We generate
the data sets. These data sets are fed to the neural network by
training these data sets to the neural network we are able to
say whether the image is clear or coded. There is also a
Method for Automatic Identification of Signatures of
Steganography Software [9] but our proposed method works
as good as any other automatic tools available in the literature.

4. OUTGUESS
Niels Provos created OutGuess [7], which used selective
pseudo-random number generator seeding to deterministically
offset statistical aberrations caused by steganographic
embedding in JPEG images, and also created StegDetect [8],
an application which detects various steganography schemes
in JPEG with a high degree of reliability.
Out Guess is a universal steganographic tool that allows the
insertion of hidden information into the redundant bits of data
sources. The nature of the data source is irrelevant to the core

of Out Guess. The program relies on data specific handlers
that will extract redundant bits and write them back after
modification. In this version the PNM and JPEG image

Ch. Demudu Naidu
Sr. Asst. Professor
Dept of I.T, ANITS,

 S. Pallam Setty
Department Of CS & SE

Andhra University

M. James Stephen
Assoc. Prof.

Dept. of I.T, ANITS,

S.K.Prashanth
Assoc. Prof., CSE

Vardhaman

Ch. Suresh
Professor

Dept. of I.T
ANITS

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Oplatkova,%20Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Oplatkova,%20Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Oplatkova,%20Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Holoska,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zelinka,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Senkerik,%20R..QT.&newsearch=partialPref
http://www.outguess.org/download.php

International Journal of Computer Applications (0975 – 888)

Volume 47– No.5, June 2012

7

formats are supported[3]. The JPEG format is currently the
most common format for storing image data. It is also
supported by virtually all software applications that allow
viewing and working with digital images.
Recently, several steganographic techniques for data hiding in

Out Guess [4]. In all programs, message bits are embedded by
manipulating the quantized DCT coefficients. Out Guess
embed message bits into the LSBs of quantized DCT
coefficients. The program relies on data specific handlers that
will extract redundant bits and write them back after
modification. It is also an open source tool and is obtained as
a direct download from the official website of outguess. It is
UNIX compatibility software. So it should be installed prior

to its operation. The following are the sequence of operations
to install Outguess. Open Terminal Window Login as Super
User using the bash command „su‟ and then enter the
„password‟. Change the present working directory to the
location where the outguess tar.gz file is located. Now extract
the file using the command „tar –xvzf filename‟. Now
change the present working directory to the extracted file.
Now type „./configure‟. Now „make‟ and then „make install‟.

In some versions of Linux these set of operations may cause
exceptions. Then the following command can be used after
setting the present working directory to the file location To
embed a file into the image the following command is used
out guess -k "my secret key" -d hidden.txt demo.jpg out.jpg
Here "my secret key" represents the key with which the file
can be extracted later from the image later and it takes the role
of security handler. demo.jpg represents the image in

which the text is to be hidden. hidden.txt represents the
data in .txt format which is to be hidden into the image.
out.jpg is the intended name of the image file obtained after
the data is hidden into the image. To extract the hidden data
the following command is used.outguess -k "my secret key" –
r out.jpg hidden.txt "my secret key" represents the key with
which the file is steganised. out.jpg is the image file obtained
as output after hiding the data into the image.

5. UBUNTU
Ubuntu is a computer operating system based on the Debian
Linux distribution and distributed as free and open source
software. The original aim of the Ubuntu team was to create
an easy-to-use. Outguess can run in this linux platform.Users
can download a disk image (.iso) of the CD, which can then

either be written to a physical medium (CD or DVD), or
optionally run directly from a hard drive

6. JPEG SNOOP
A program JPEG snoop was used which is able to work with
extended information in image, video and text files. JPEG

snoop is able to extract such a information like:

Matrices of quantization tables of colourness and brightness
Information about reduction of colour parts:

 Quality of JPEG image.
 EXIF information.
 RGB histograms.
 Tables of Huffman‟s code.
JPEG Snoop is very simple and user-friendly device to test

and use. The image is opened into the JPEG Snoop window
and automatically the different hidden encoding for the image
are displayed as results and also it provides an option for
saving the results in a .txt format which enables the user to
work over the obtained results.

7. HUFFMAN’S CODING
Huffman coding are pervasive throughout computer science.

This coding scheme is not limited to encoding messages in
English text. In fact, Huffman coding can be used to compress
parts of both digital photographs and other files such as digital
sound files (MP3) and ZIP files. If you have ever used a JPEG
picture file then you have probably used Huffman coding[6]
without even knowing it.

 In the case of JPEG files the main compression scheme uses a
discrete cosine transform, but Huffman coding is used as a

minor player in the overall JPEG format. There are of course
many other file compression techniques besides Huffman
coding, but next to run-length encoding, Huffman coding is
one of the simplest forms of file compression. If you want to
understand other more sophisticated compression schemes
such as arithmetic coding and Lempel-Ziv-Welch coding you
will be better served by first mastering Huffman coding.
Huffman coding can be used effectively anywhere there is a

need for a compact code to represent a long series of a
relatively small number of distinct bytes

Table 1. Table of Huffman’s coding – clear picture

 DC,

Class 0

DC,

Class 1

AC,

Class 0

AC,

Class 1

1 Bit 0 0 0 0

2 Bit 12 59 46 49

3 Bit 73 16 12 17

4 Bit 12 14 24 18

5 Bit 3 9 9 10

6 Bit 0 2 3 4

7 Bit 0 0 3 0

8 Bit 0 0 1 1

9 Bit 0 0 1 0

10 Bit 0 0 0 0

11 Bit 0 0 0 0

12 Bit 0 0 0 0

13 Bit 0 0 0 0

14 Bit 0 0 0 0

15 Bit 0 0 0 0

16 Bit 0 0 0 0

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Linux_distribution
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software

International Journal of Computer Applications (0975 – 888)

Volume 47– No.5, June 2012

8

Table 2: Table of Huffman’s coding – coded picture

 DC,

Class 0

DC,

Class 1

AC,

Class 0

AC,

Class 1

1 Bit 0 0 0 0

2 Bit 15 80 42 63

3 Bit 73 11 10 11

4 Bit 7 7 25 16

5 Bit 4 1 11 6

6 Bit 0 0 4 3

7 Bit 0 0 4 0

8 Bit 0 0 1 1

9 Bit 0 0 1 0

10 Bit 0 0 0 0

11 Bit 0 0 0 0

12 Bit 0 0 0 0

13 Bit 0 0 0 0

14 Bit 0 0 0 0

15 Bit 0 0 0 0

16 Bit 0 0 0 0

8. TRAINING SETS
To generate the training sets for training the neural networks,
different series of photographs[5] were considered. On a
whole 200 images were considered with varying resolutions.
The resolutions taken to accomplish the results were

S
S

S
S
S

 1024X768

1280X1024

2048X1536

2592X1944

3872X2592

[1]

These five resolutions are applied to all the images using

photo editing tools and the corresponding Huffman coding are

extracted using the JPEG Snoop tool for both the clear image

as well as the coded image which have been coded through

the Outguess tool. The message resembles to be unique in

each image due to pseudo random generator of numbers.

After the JPEG Snoop created the tables for the coded image

i.e. Huffman‟s Coding, each column from the tables was taken

and given to a row one after one. This led to a vector of length

equal 40. Examples of clear and coded inputs in a training set

are in Fig. 3 and Fig. 4. It is a matrix of 5 individual inputs of

length 40. These inputs are then given on the input layer of

neural network. Output was 0 in the case of clear input and

nearly or equal to1 in the case of coded input

Table 3: training set for clear image

Image (1024X768)€

{0,12,73,12,3,0,0,0,0,0,0,59,16,14,9,2,0,0,0,0,0,46,12,

24,9,3,3,1,1,0,0,49,17,18,10,4,0,1,0,0}

Image (1280X1024)€

{0,11,75,11,2,0,0,0,0,0,0,61,16,13,8,2,0,0,0,0,0,45,13,

24,9,3,3,1,1,0,0,51,17,17,9,4,0,2,0,0}

Image (2048X1536)€

{0,12,80,7,1,0,0,0,0,0,0,70,16,10,4,1,0,0,0,0,0,44,11,

33,8,2,1,1,0,0,0,66,13,14,4,2,0,1,0,0}

Image (2592X1944)€

{0,11,78,8,2,0,0,0,0,0,0,66,17,11,5,1,0,0,0,0,0,44,12,

30,9,2,2,1,1,0,0,61,14,15,6,3,0,1,0,0}

Image (3872X2592)€

{0,12,76,9,3,0,0,0,0,0,0,64,17,12,6,1,0,0,0,0,0,45,12,

27,9,3,2,1,1,0,0,58,15,16,7,3,0,1,0}

Table 4: training set for coded image

Image (1024X768)€

{0,15,73,7,4,0,0,0,0,0,0,80,11,7,1,0,0,0,0,0,0,42,10,25,11,4,4,1,

1,0,0,63,11,16,6,3,0,1,0,0}

Image (1280X1024)€
{0,16,73,7,4,0,0,0,0,0,0,81,11,6,1,0,0,0,0,0,0,43,
10,26,11,3,3,1,1,0,0,67,11,14,5,3,0,1,0,0}

Image (2048X1536)€
{0,16,75,5,3,1,0,0,0,0,0,88,8,3,0,0,0,0,0,0,0,41,8,38,8,2,2,1,0
,0,0,78,7,10,3,2,0,0,0,0}

Image (2592X1944)€
{0,16,74,6,4,1,0,0,0,0,0,86,9,4,1,0,0,0,0,0,0,41,8,34,10,2,3,1,

0,0,0,75,8,11,4,2,0,0,0,0}

Image (3872X2592)€
{0,15,74,6,4,1,0,0,0,0,0,84,9,5,1,0,0,0,0,0,0,42,9,31,10,3,3,1,
1,0,0,71,9,12,5,2,0,1,0,0}

Once the training sets are obtained we need to feed it to
the neural networks to obtain the weights of the connections
between the neurons. This can be done by using Back
propagation algorithm.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.5, June 2012

9

Fig.1-Clear Image

Fig.2-Coded Image

9. FUNCTIONAL LINK ARTIFICIAL

NEURAL NETWORK
Functional Link Artificial Neural Networks are a popular type
of network that can be trained to recognize different patterns
including images, signals, and text. FLANN architecture for
Steganography detection coded in the images is the single-
layer feed forward neural network consisting of one input and
an output layer. The FLANN generates output (0 or 1) by
expanding the initial inputs (bits in datasets) and then

processing to the final output layer. Each input neuron
corresponds to a component of an input vector. The output
layer consists of one output neuron that computes the output
(0 or 1) as a linear weighted sum of the outputs of the input
Layer. The genrall architecture of Functional Link Artificial
Neural Network (FLANN) is shown in Fig.3

Fig.3 FLANN Architecture

The functional expansion takes bits of input data(200 bits) for
each image and expands the input vector to 800(200*4)values.
Initially weights are generated randomly for each of the above
outputted values. Then we apply logarithms (the reason for
applying logarithms is that when we raise the outputted values

to some power the value becomes very large and hence in
order to minimize the values and fit them within the range we
apply logarithms) for the outputted values and then multiply
them with the random weights.

Now each of the computed values are added together and a
sum is generated. This generated sum becomes the output.
We find the difference between the obtained output and
expected output and this difference is the error. Now we

check whether the error is within the specified limit, if it is not
within the limit then we subject it to learning algorithm. If it is
within the range then we input the next image and repeat the
above process. Now we multiply the error with a random
weight and compute a very small amount of weight dw. Then
depending on the error we add or subtract this small weight
dw to the random weight.

Now we calculate the output and the error for these modified
weights and repeat checking the error and deciding whether to

apply the learning algorithm or processing the next image. If
the checking of errors for all the images is done then the
training completes. We take some images which are not part
of the training process and give them as input and compute
the output. If the computed output is close to 0 then the image
is said to be clear. If it is nearer to 1 the image is said to be
coded.

There are three different functional expansion of the input

pattern in the FLANN. They are Chebyshev, Legendre and
Power Series, corresponding networks named as C- FLANN,
L-FLANN and P-FLANN respectively.

9.1 Chebyshev polynomials [5]

2
0 21

3 3 2
3 4

() 1, () , () 2 1,

() 4 3 , () 8 8 1.

T x T x x T x x

T x x x T x x x

   

    

Higher order Chebyshev polynomials may be generated
by the recursive formula given by:

1 2() 2 () (), 2,(1 1).n n nT x xT x T x n x      

International Journal of Computer Applications (0975 – 888)

Volume 47– No.5, June 2012

10

9.2 Legendre polynomials [5]

2
0 21

3 4
3 4

() 1, () , () (3 1) 2,

() (5 3) 2, () (35 30 3) 8.

L x L x x L x x

L x x x L x x x

   

    

Higher order Legendre polynomials may be generated
by the recursive formula given by:

1 2() [(2 1) () (1) ()] ,

2, (1 1).

n n nL x n xL x n L x n

n x

    

   

9.3 Power series (x =any value) [5]
Convergence of the series will depend upon the values
of x that we put into the series. A power series may converge
for some values of x and not for other values of x

() , 0.n
nP x x n 

10. EXPERIMENTAL RESULTS
Input: For the experimental purpose, we have taken the input
(datasets) from the Table 3 and Table 4 for the images Image1
and Image2.

Output: The experimental results had shown that the
proposed system could detect whether the image is clear or by

coded by using the obtained output value. If the output is
equal or nearer to 1, then it is a coded image. If the output is 0
or nearer to 0, then it is a clear image.

We coded the algorithms in JAVA and developed a
standalone system and created a user interface for the ease of
use. Results in this project show that used model had almost
100% success in revealing Steganography by means of
Outguess

11. CONCLUSION
This project deals with detection of steganography content in
images inserted by program Outguess. The revealing of it is
done by means of the system developed based on Functional
Link Artificial Neural Networks. Results show that used
neural networks has a big success, almost 100%.

The further work supposes to learn other types of neural
networks also to find their ability of adaptation on such
problems. The parallel step is also to try to learn neural
networks on other steganographic methods – e.g. inserted by a
program Steghide.

12. REFERENCES
[1] Zuzana Oplatkova, Jiri Holoska, Ivan Zelinka,

Roman Senkerik, Steganography Detection by

Means of Neural Networks 19th International
Conference on Database and Expert Systems
Application, 2008 September 01- September 05,
ISBN: 978-0-7695-3299-8

[2] R.J. Anderson and F.A.P. Petitcolas, “On the

Limits of Steganography”, IEEE Journal of
Selected Areas in Communications, Special Issue
on Copyright and Privacy Protection, vol. 16(4), pp.
474−481, 1998.

[3] Software Outguess www.outguess.org

[4] Provos, N. Defending Against Statistical
Steganalysis. Proc.10th USENIX Security
Symposium. Washington, DC, 2001.

[5] A Novel Neural Network Approach For Software
Cost EstimationUsing Functional Link Artificial
Neural Network (FLANN)- B.Tirimula Rao,
B.Sameet, G.Kiran Swathi.

[6] Huffman tables
homepage.smc.edu/kennedy_john/HUFFMAN.PDF

[7] N. Provos. Defending against statistical
steganalysis. In Proceedings of the 10th USENX

Security Symposium, Washington D.C., August
2001

[8] N. Provos. OutGuess – Steganography Detection.
http://www.outguess.org/ detection.php.

[9] Bell, G., Lee, Y.K.. A Method for Automatic
Identication of Signatures of Steganography
Software. IEEE Transactions on Information
Forensics and Security 2010;5(2):354{358.

[10] Oplatkova,Z, Holoska, J. ; Zelinka,
I. ; Senkerik, R. „Detection of Steganography

Inserted by OutGuess and Steghide by Means of

Neural Networks‟Third Asia International

Conference on Modelling & Simulation,
2009. AMS '09.

[11] Chandrababu, Aron, Using an
Ariticial Neural Network to Detect the Presence of
Image Steganography‟ A Thesis Presented to The
Graduate Faculty of The University of Akron, May,
2009

[12] Sedighe Ghanbari, Manije Keshtegary, Najme
Ghanbari, New Steganalysis Method using GLCM
and Neural Network, International Journal of

Computer Applications © 2012 by IJCA Journal,
Volume 42 - Number 7.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Zuzana%20Oplatkova
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Jiri%20Holoska
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Ivan%20Zelinka
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Roman%20Senkerik
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Holoska,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zelinka,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zelinka,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zelinka,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Senkerik,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5071934
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5071934
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5071934

