

HIDING DATA IN IMAGE USING STEGANOGRAPHY WITH TWO-

LEVEL SECURITY AND USING WEBASSEMBLY

JAMES STEPHEN MEKA Principal, WISTM, Andhra University, (jamesstephenm@gmail.com)

KASI VENKAT KIRAN, Associate Professor,WISTM (kasi.kvk@gmail.com)

Abstract

Users of digital communication can send digital data from one location to another across the

internet. Intruders may be able to retrieve this data. As a result, some form of data security is

required before the data leaves the sender's location. Data is protected using techniques such as

cryptography and steganography. Cryptography encrypts the data, but it also discloses its

presence Steganography conceals the existence of information so that anyone other than the

sender and recipient is unable to recognise it. However, only standalone software that is

platform-dependent is available to do steganography. Web apps have the disadvantage of

requiring a browser to run and a server to accomplish heavy computational operations (like

image processing or video processing, which is very slow or not possible if accomplished alone

on a browser). And, because of intruders, transporting data from the user's end to the server for

processing is not completely secure. To address this issue, we propose leveraging web assembly

to perform cryptography, steganography, and other functions on the client-side without

transmitting any data to the server.

Keywords: digital communication, Steganography, Cryptography, WebAssembly.

1. Introduction

In the present era, the Internet has become a convenient means of data transfer, therefore

information security is one of the most pressing concerns. To keep the communication secret, a

variety of methods for encrypting and decrypting the secret data have been created.

Steganography is the technique of hiding data within digital media, and can also be used for

watermarking. The goal is to put concealed data into the form of media for identification and

copyright protection. The key constraints of this

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2800

mailto:jamesstephenm@gmail.com
mailto:kasi.kvk@gmail.com

The procedure is the quantity of message data, the requirement for invariability of embedded

data under distortions such as lossy compression, and the removal or modification of third

parties. The three types of data hiding techniques are cryptography, steganography, and

watermarking. Cryptography makes data meaningless, whereas watermarking and, in particular,

steganography conceals the presence of secret data. The digital representation of media improves

data accuracy, efficiency, and mobility while also making it easier to access. Copyright

violations and content modification or manipulation, on the other hand, have negative

consequences. Intellectual property protection, content manipulation indication, and annotation

are the key motivations for employing these tactics. However, to do steganography (using the

LSB technique), there are only standalone programmes that are platform-dependent, and

implementing them for many systems is expensive and time-consuming when compared to Web

applications. The challenge with web apps is that they require a browser to function and a server

to perform complex calculations (like image processing or video processing, which is very slow

or not possible if accomplished alone on a browser). And transmitting data from the user's end to

the server for further processing implies there's a danger it would be captured by attackers, which

is a major deterrent to users considering online applications in the first place, and indeed

steganography. To resolve this concern, we propose leveraging web assembly to accomplish

cryptography, steganography, and other functions on the client-side without transmitting any

data to the server. By using WebAssembly, we may attain the processing speed of a native

application in a web-based application. The program is created in compiled languages such as

Go, C, C++, Rust, Kotlin, C #, F # Swift, and is compiled down to a web assembly, which we

can utilize straight in our web application using web assembly JS Linker code. In this paper, we

used the Go language to develop code for image steganography with two-level security and

compiled it to WASM code using the command 'GOARCH=wasm GOOS=js go build -o

lib.wasm main.go'. Finally, we are using the wasm exec.js linker file provided by the Go

language to link wasm code to js, and now the global function written in the Go programme is

available for use in Js Script.

2. Literature Review

WebAssembly is a low-level assembly-like language with a compact binary structure that

operates at a near-native speed and serves as a compilation target for languages like C/C++, C#,

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2801

and Rust to run on the web. It's also meant to work alongside JavaScript, so the two may interact.

To use web assembly, we first use functional programming to implement the algorithm and logic

(in our scenario, LSB for steganography, AES for encryption, and LZW for data compression) in

the programming languages that support web assembly (Functional programming is a style of

programming in which pure functions are used to solve the problem).

WebAssembly was intended to complement and run alongside JavaScript; developers can import

WebAssembly functionalities into a JavaScript application and exchange functionality between

the two using the WebAssembly JavaScript APIs. This helps to integrate the speed and reliability

of WebAssembly with both the expressiveness and versatility of JavaScript in the same project,

although you do not know how to implement WebAssembly code. Importing WebAssembly

modules into a web (or Node.js) application exposes WebAssembly functionalities for use

through JavaScript. WebAssembly can be used by JavaScript frameworks to continue providing

significantly better performance and functionalities while preserving functionality approachable

to web developers.

Fig 2 Workflow of WebAssembly

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2802

Example:

C code:

int square(int num1) {

 return num1* num1;

}

WebAssembly code :

(module

 (table 0 anyfunc)

 (memory $0 1)

 (export "memory" (memory $0))

 (export "square" (func $square))

 (func $square (; 0 ;) (param $0 i32) (result i32)

 (i32.mul

 (get_local $0)

 (get_local $0)

)

)

)

Js code :

var wasmModule = new WebAssembly.Module(wasmCode);

var wasmInstance = new WebAssembly.Instance(wasmModule, wasmImports);

log(wasmInstance.exports.square(42));

Output:

1764

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2803

3. Existing System

In the existing system, we be using standalone programmes to accomplish steganography with

cryptography, which is written in programming languages such as (java, c++, python, and many

others), and several of them are platform-dependent; to make them cross-platform, we could

perhaps write code in platform-specific languages and develop mobile apps. And, updating or

adding modifications regularly, should be done independently for each platform, which is an

expensive and time-consuming operation.

And using a web application for this data-sensitive operation is not a smart option because the

data should not leave the browser for processing. After all, the network could've been monitored

by an attacker or intruder, or the service provider could record all the data without the proper

authorization.

4. Proposed System

We propose implementing web assembly for client-side data processing to solve this problem.

To ensure that the user trusts us, we use WebAssembly to perform client-side image processing,

encryption, and data compression without exposing data to the server. We may conclude that the

data is secure and private to the user solely because it is not routed from the user to the server for

any data processing and all operations are performed at a noticeable speed on the user system.

Since various devices have different computational resources, the developed web application can

run on multiple platforms, allowing users to utilize it on as many devices as they require.

However, performance may fluctuate from device to device.

Furthermore, the application may easily receive updates and fixes from the developer without

having to worry about the overhead of updating numerous platforms or applications developed in

multiple frameworks.

5. Methodology

In this proposed system there are two main methods for encoding secret data which is encrypted

using the password in the image and decoding the secret data from the image using a password

which is used in the encoding step. These two methods were written in Go, a compiled language,

and then compiled to Web assembly.

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2804

5.1 Encoding

First of all the application should be provided with an image and message with the password.

The message is first encrypted using the AES (Advanced Encryption Standard) algorithm and

then the encrypted text is compressed using the LZW (Lempel-Ziv-Welch) algorithm because we

can’t store a message of more than 12% size of the image if we are using an 8-bit image. So, we

are using LZW which is a simple, and efficient lossless data compression algorithm which is

used widely because of its simplicity and robustness. Then the data is encoded into an image

using LSB (Least significant bit) algorithm which is used widely and effectively for 8-bit

images. This algorithm uses the last bit of every byte (8 bits which are one pixel of an image) to

store the data. After that, a new image is created which is identical to the image which was given

before. The image is provided to the user for downloading and it contains the message. To get

the message back the user should decode the image with the password.

Fig 5.1(a) encoding workflow

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2805

5.2 Decoding

It is the inverse of the encoding process. The image provided is first decoded using the LSB

algorithm, and thereafter compressed information is obtained, which is then decompressed using

the LZW algorithm. Finally, an encrypted text is obtained, which would be decrypted using the

key provided by the user, and the data is delivered to the user.

Fig 5.2(a) decoding workflow

6. EXPERIMENTAL RESULTS

The algorithm is written in the Go programming language, compiled to WASM, and run on a

Windows 10 platform. Several color photos are used to demonstrate the process. We used 577

words, 3930 bytes of Lorem Ipsum English text, and a 1280X853 "landscape" image in our tests.

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2806

Figure 6.3 shows a 1280X853 original image, and we can hide 31440 bits in the original image

(see Figure 6.3). The proposed techniques are used to insert the stego image shown in Figure 6.4.

Because the pixels in a "landscape" image are roughly uniformly dispersed, it is extremely

difficult to discern hidden data with the human eye.

Fig 6.1 encoding image

Fig 6.2 decoding image

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2807

Fig 6.3 original image Fig 6.3 encoded image

Other comparison graphs of the original and stego image histograms can be seen here.

Fig 6.4 histograms of the original image

Fig 6.4 histograms of the original image

7. Conclusion

We use image steganography in this proposed work, which is a technique for transmitting secret

information by concealing it under a covering material. Before concealing secret data beneath the

cover image, the data is encrypted using AES for additional security and then compressed with

LZW. Lossless compression is achieved using the LZW approach. Data compression is the

process of transforming a stream of symbols into codes. Lossless compression is implemented in

proposed approaches to reduce the size of the secret message while maintaining quality. When

information is not lost even after decompression and 100 per cent of the information from

compressed data is recoverable. The intruder would have to put in a lot of effort to reconstruct

the original message, which would be unachievable as long as the exact encryption key is

known. The AES algorithm will be used for data encryption of compressed data. This technology

adds a second layer of security to information. Both the sender and the receiver must be aware of

the secret keys. The Least Significant Bits (LSB) algorithm is used for steganography, which

involves replacing the image's least significant bits with information bits. While the encryption

process increases the procedure's complexity, it also increases its security. This is a

straightforward method. This approach replaces the least significant bits of some or all of the

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2808

bytes inside an image with bits of the secret message. And to achieve this, we use web assembly

to process data on the client-side without sending it to the server. The World Wide Web

Consortium (W3C) developed WebAssembly, or WASM for short, and released it in 2018.

WebAssembly is a "compilation target," which means that developers can provide their code—

typically Rust, C++, or AssemblyScript—and WebAssembly compiles it to bytecode for high-

speed execution in the web browser.

8. References

[1] Min Wu; Tang, E.; Lin, B., "Data hiding in digital binary image," Multimedia and Expo,

2000. ICME 2000. 2000 IEEE International Conference on, vol.1, no., pp.393-396 vol.1, 2000.

[2] M. Al-Shatnawi, “A new method in image steganography with improved image quality”

Appl. Math. Sci., Vol. 6, 2012, no. 77-80, 3907-3915.

[3] Abboud, G.; Marean, J.; Yampolskiy, R.V."Steganography and Visual Cryptography in

Computer Forensics," Systematic Approaches to Digital Forensic Engineering (SADFE), 2010

Fifth IEEE International Workshop on, vol., no., pp.25-32, 20-20 May 2010.

[4] Khalil challita, Hikmat Farhat, “combining steganography and cryptography: new

directions,” IJNCAA, Vol 1, 2011, pp 199-208.

[5] An Introduction to Image Steganography Techniques. 2012 International Conference on

Advanced Computer Science Applications and Technologies

[6] Mohammed Abdul Majeed and Rossilawati Sulaiman, “An improved LSB image

steganography technique using bit-inverse in 24-bit color image”, Journal of Theoretical and

Applied Information Technology, pp 342-348, 2015.

[7] Vipul Sharma and Madhusudan, “Two new approaches for image steganography using

cryptography”, Third international conference on Image Information Processing (ICIIP), 2015.

[8] Principal Joseph and S. Vishnukumar, “A study on steganography techniques”, 2015 Global

Conference on Communication Technologies (GCCT), 2015.

[9] Rupali Jain and Jayshree Boaddh, “Advances in digital image steganography”, International

Conference on Innovation and Challenges in Cyber Security, 2016.

[10] Nidhi Menon and Vaithiyanathan, “A survey on image steganography”, International

Conference on Technological Advancements in Power and Energy, Dec 2017.

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2809

[11] D. Herrera, H. Chen, E. Lavoie and L. Hendren, WebAssembly and JavaScript Challenge:

Numerical program performance using modern browser technologies and devices, Montreal: QC:

University of McGill, 2018.

[12] S. Padmanabhan and P. Jha, "WebAssembly at eBay: A Real-World Use Case", 2020,

[online] https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/.

[13] "WebAssembly vs. the world. Should you use WebAssembly?", 2018, [online]Available:

https://blog.sqreen.com/webassembly-performance/.

[14] Lempel Ziv Welch compression and decompression, [online] Available:

https://iq.opengenus.org/lempel-ziv-welch-compression-and-decompression/

[15] WebAssembly Studio, [online] Available :https://webassembly-studio.kamenokosoft.com/

[16] "WebAssembly Memory", 2020, [online] Available:https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Globalobjects/WebAssembly/Memory.

[17] "Webassembly Use Cases", 2020, [online] Available:https://webassembly.org/docs/use-

cases/.

[18] Steganography: Hiding an image inside another, [online] Available:

https://towardsdatascience.com/steganography-hiding-an-image-inside-another-77ca66b2acb1

The International journal of analytical and experimental modal analysis

Volume XIV, Issue V, May/2022

ISSN NO: 0886-9367

Page No : 2810

https://blog.sqreen.com/webassembly-performance/
https://webassembly-studio.kamenokosoft.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Globalobjects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Globalobjects/WebAssembly/Memory
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/

