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Abstract—The particle filter is an important approximation
method for online state estimation in nonlinear nonGaussian
scenarios. The resampling step in the particle filter is critical
because it eliminates the wasteful use of particles that do not
contribute to the posterior (degeneracy). The fully stochastic
resamplers, despite being unbiased in approximating the pos-
terior density, involve exhaustive and sequential communication
within the particles and thus are computationally expensive. The
alternate partial deterministic resamplers overcome this problem
by reducing the communication within particles but this leads
to approximation bias. This paper proposes a fast resampling
procedure that gives an accurate approximation of the posterior
and tracks as accurately as the conventional resamplers.

Index Terms—Particle filter, resampling, bias analysis, channel
estimation, bearings-only tracking.

I. INTRODUCTION

THE Bayesian state estimation is an important solution
to estimate hidden dynamic target states and is used in

a wide range of applications including communications and
tracking [1]. The particle filter (PF) [2], [3] is a popular
Bayesian estimation method that provides a framework for
inferring the hidden target state in nonlinear and nonGaussian
state space models. The PF implements the Bayesian estima-
tion by sequentially generating and updating a set of particles
and their corresponding weights which together represent
the state posterior probability density function (pdf). This
operation is called sequential importance sampling (SIS). SIS
by itself, leads to degeneracy, a situation where few particles
take the full weight and the others become nonrepresentative
of the posterior. This problem is overcome using resampling
that duplicates the larger weight particles in place of the lower
weight ones such that the PF represents the posterior more
accurately [4], [5].
The stochastic resamplers are by far the most popularly used
resamplers. These operate by first evaluating the cumulative
sum of the normalised particle weights and then finding a value
of the sum greater than a random sample drawn from U(0, 1),
one sample per particle. The popular of these methods are the
multinomial [2], stratified [6] and systematic [7] resamplers
where the latter improve over the former by reducing the

associated Monte Carlo error variance. The second class are
the partially deterministic resamplers. The residual resampler
[8] resamples the low weight particles using the principle of
proportional allocation of the high weight ones. The work in
[9] used thresholding schemes to deterministically replicate
large weight particles and stochastically sample the lower
weight ones. A similar approach for treating wasteful dupli-
cation of large weight particles was proposed in [10], [11].
The soft systematic resampler [12] improves over the residual
resampler and treats the tails of the posterior more accurately.
Another class of resamplers developed to suit for parallel
implementation include the recently proposed Metropolis re-
sampler [13] and others [14], [15]. These aid in nearly-parallel
PF implementation by reducing the communication within the
particles; but this comes at the expense of reduced filtering
accuracy and bias.
Contribution of this paper: The stochastic resamplers, espe-
cially the systematic and residual resamplers, are by far the
most extensively used PF resampling methods. Leveraging
the resampling on random samples, one sample per particle,
sequentially for all the paticles, allows for exhaustive com-
munication within all the particles in a way that the total
information (weight) is preserved; this results in the much
desired unbiased representation of the posterior. However this
exhaustive and sequential resampling operation leads to high
Monte Carlo error variance [4] and computational complex-
ity [13]. The partial deterministic resamplers overcome this
computational complexity but a comprehensive study of their
unbiasedness is not available. This paper proposes a fast de-
terministic resampling approach with minimal communication
within the particles and practically satisfies the unbiasedness
property of the PF for good resampling quality.
The rest of the paper is organised as follows. Section II sets
the notation and presents the PF. Section III presents the
proposed deterministic resampling method. This is followed
by a analysis on the bias properties of the proposed method
in section IV, evaluation results in section V and conclusion
in section VI.



II. PARTICLE FILTERING

Consider a state space model defined by a Markovian state
transition and observation models as

xt|xt−1 ∼ p(xt|xt−1), yt|xt−1 ∼ p(yt|xt) (1)

for t = 1, · · · , T , where (a) the target state xt ∈ Rdx

at time instant t ∈ N is a hidden Markov process with
initial distribution p(x0) and the Markov state transition pdf
p(xt|xt−1) with dx denoting the state dimensionality, (b) the
sensor observation yt ∈ Rdy is conditionally independent
given the state and has the observation density is p(yt|xt)
with dy denoting the observation dimensionality. The model
includes a vector of known parameters which is omitted here
for convenience.

The aim of Bayesian state filtering is to recursively estimate
the posterior pdf of the hidden target state using all available
observations. If the posterior pdf p(xt−1|y1:t−1) at time t− 1
is available, then the posterior pdf at time t is computed as

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

where the a priori state prediction pdf is p(xt|y1:t−1) =∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 and p(yt|y1:t−1) is the

normalisation constant. The PF approximates (or represents)
the pdfs in the Bayesian recursion using a set of weighted par-
ticles. Consider a set of N weighted particles {xi

t−1, w
i
t−1}Ni=1

representing the posterior pdf of the target state p(xt−1|y1:t−1)
at time t − 1. In the SIS step, the PF generates a new set of
particles from the old ones using a proposal distribution q(.)
and weighs them according to

x̄i
t ∼ q(xt|xi

t−1,yt) (2)

w̄i
t = wi

t−1

p(yt|x̄i
t)p(x̄

i
t|xi

t−1)

q(x̄i
t|xi

t−1,yt)
, i = 1, ..., N (3)

The weights are then normalised and this weighted particle
set is representative of the posterior at t. However, after a
few iterations, the discrepancy between the weights increases,
leading to degeneracy. The solution to this is resampling,
that eliminates particles that have negligible weights and
replaces them by copies of others with larger weights. Thus
the unbiased PF representation of the posterior is

p(xt|y1:t) ≈
M∑
i=1

w̄i
tδ(xt − x̄i

t) =

N∑
i=1

nit
N
δ(xt − x̄i

t) (4)

where nit denotes the number of replications of the ith
particle determined in accordance to its weight. Conventional
resampling methods that give an unbiased representation of the
posterior [4], [5] obtains a new weighted set of N particles
{x̄i

t, w̄
i
t}M=N

i=1 −→ {xi
t, w

i
t}Ni=1 as follows, for i = 1, · · · , N ,

an index is sampled j(i) distributed according to the probabil-
ity P(j(i) = m) = w̄m

t ,m = 1, · · · , N and assign xi
t = x̄

j(i)
t

and set wi
t = 1/N . Then (4) changes to

p̂(xt|y1:t) ≈
N∑
i=1

wi
tδ(xt − xi

t) =

N∑
i=1

1

N
δ(xt − xi

t) (5)

This resampling operation, being sequential and also exhaus-
tive in nature over all the particles, renders the PF com-
putationally expensive. Subsequently this paper proposes a
minimalistic resampling strategy that will substantially speed
up the PF.

III. PROPOSED MINIMALISTIC RESAMPLING

Here a deterministic redistributive resampling scheme is
proposed to obtain {x̄i

t, w̄
i
t}Ni=1 −→ {xi

t, w
i
t}Ni=1 to satisfy

an unbiased representation of the posterior. Consider a set of
normalised weighted particles at time t that are sorted in accor-
dance to their weights as {x̄i

t, w̄
i
t}Ni=1 : w̄1

t ≥ w̄2
t ≥ · · · ≥ w̄N

t .
Determine a set of indices corresponding to very low weights
as {i : w̄i

t ≤ Th/N} and then from it determine the number
of large weights particles that would replicate the low weight
ones as

L = N − |{i : w̄i
t ≤ Th/N}| (6)

The proposed minimalistic resampling method eliminates only
those low particles with low weights and replaces them with
copies of the first L large weight particles. The aim here is to
obtain a fixed number of replications for the first L particles as
{nit}Li=1 such that the total would count for all the N particles
as
∑L

i=1 n
i
t = N . The way to do this is as follows.

Out of the first L particles, the first M particles will be
replicated as

M = N −
(
L

⌊
N − L
L

⌋)
+ 1 (7)

nit =

⌊
N − L
L

⌋
+ 2, i = 1, · · · ,M (8)

and the remaining L−M particles will be replicated as

nit =

⌊
N − L
L

⌋
+ 1, i = M + 1, · · · , L (9)

This implies that the first L particles are redistributed within
all the N particles. The weight of each of the L replicated
particles is preserved by redistributing it within the replications
of the particle. Thus the resampling indices and resampled
particles and weights are

{j(i)i=1,...,N} =

{
1, · · · , 1︸ ︷︷ ︸
ni=1
t times

, 2, · · · , 2︸ ︷︷ ︸
ni=2
t times

, · · · , L, · · · , L︸ ︷︷ ︸
ni=L
t times

,

}

{xi
t}Ni=1 =

{
x̄1
t , · · · , x̄1

t︸ ︷︷ ︸
ni=1
t times

, x̄2
t , · · · , x̄2

t︸ ︷︷ ︸
ni=2
t times

, · · · , x̄L
t , · · · , x̄L

t︸ ︷︷ ︸
ni=L
t times

,

}

{wi
t}Ni=1 =

{
w̄1

t

n1
t

, · · · ,
w̄1

t

n1
t︸ ︷︷ ︸

ni=1
t times

,
w̄2

t

n2
t

, · · · ,
w̄2

t

n2
t︸ ︷︷ ︸

ni=2
t times

, · · · ,
w̄L

t

nLt
, · · · ,

w̄L
t

nLt︸ ︷︷ ︸
ni=L
t times

,

}

The weight of the discarded particles wspare = 1−
∑N

i=1 w
i
t =∑M

i=L+1 w̄i is redistributed among all the weights as

wi
t = w̃i

t + wspare/N (10)



such that the final weights sum to one.
It can be observed that the proposed method eliminates only
the lowest weight particles and replaces them with the higher
weight ones in a way that preserves the total weight. The
approach is simple, extremely fast and importantly, gives and
unbiased estimate of the posterior. The method is termed
minimalistic as only those particles that should be replicated
are treated within the resampling process and no computational
effort is wasted on those that will be discarded. It is noteworthy
that the proposed minimalistic resampler will be sensitive to
the choice of the threshold that determines the set of low
weights that should be discarded. This sensitivity will be
discussed along with the evaluation in subsequent sections.

IV. BIAS ANALYSIS

In this section, the proposed resampler is analysed on the
basis of its unbiasedness in preserving the total weight. A
resampler is said to be unbiased if the weight of a particle is
completely preserved, i.e., the difference between the actual
weight and the total weight in each of its copies should
zero. The error in the weight preservation is ei = w̄i −
E(
∑
∀j(i)=i:xj=x̄i wj) which should be ideally zero.

Lemma: The error in the weight preservation condition for
the proposed redistributive resampling is negative for i =
1, · · · , L thereafter positive and decaying.
Proof:

ei = w̄i − E
( ∑
∀j(i)=i:xj=x̄i

wj

)

= w̄i −
( ∑
∀j(i)=i

(
w̄i

ni
+
wspare

N

))

= w̄i −
niw̄i

ni
−
niwspare

N

=

−
njwspare

N
, i = 1, · · · , L, as ni > 0

w̄i, i = 1, · · · , L+ 1, as ni = 0
(11)

The variance in the error is V(ei) = 0 because the approach is
fully deterministic. The proposed method is compared with the
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Fig. 1. The weights for N = 100 samples. The left panel corresponds
to the case when many samples having moderate weight, and the right
to the case when few samples having significant weight.

stochastic, the residual and partial deterministic and Metropo-
lis resamplers. All results in this paper are averaged over 500
Monte Carlo runs. Two cases of weight sequences as shown

in Fig 1, (a) many samples having moderate weights (the
left panel), and (b) fewer samples having significant weights
(the right panel) are tested. Fig 2 shows the error ei=1:N for
different resamplers for the weight sequence in the left panel
of Fig 1. Fig 3 shows the error ei=1:N for different resamplers
for the weight sequence in the right panel of Fig 1. It can
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Fig. 2. The top panel shows the error ei versus the sample index, and
the bottom panel shows the error and error bounds of the systematic
resampler and the error of the proposed resampler versus the sample
index, for the weights in the left panel of Fig 1.

be observed from these figures that while all the resamplers
show low error, the proposed minimalistic resampling, and
systematic and residual resampling methods have the lowest
error amongst them all. It can also be observed that the error in
the proposed resampler lies within the bounds of the popularly
used systematic resampler and the total weight is preserved.
Moreover the error function ei, i = 1, ..., L is negative for the
first L = 93 samples in case (a) and for the first L = 12
samples in case (b), and thereafter positive and decaying
(transition shown using black marker) for Th = 0.02, 0.2 as
derived in (11). It can also be seen that small Th ≪ leads
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Fig. 3. The top panel shows the error ei versus the sample index, and
the bottom panel shows the error and error bounds of the systematic
resampler and the error of the proposed resampler versus the sample
index, for the weights in the right panel of Fig 1.

to no replacement and large Th ≫ leads to degeneracy; so a
moderately low Th ∈ (0.1, 1), empirically tested, is a practical
choice.

A. Posterior analysis for a simple channel estimation example

Consider a wireless communication system where the goal
is to track a channel vector xt ∈ Rdx where dx = 1 is the
number of dynamic coefficients to be estimated. The channel
is estimated by sequentially transmitting pilots that are known
to the receiver. For this, a simple linear Gaussian state space
model is considered,

xt = Fxt−1 + at; yt = g>xt + et; t = 1, · · · , T = 100

where F = 0.9, g> = 1 and the noise densities are
at ∼ N (0, τ2 = 1) and et ∼ N (0, σ2 = 0.1). The initial
actual target state is xt=0 = 10 and the PFs are initialised
with p(xt=0) = N (7, 1). For this model, the accuracy of

the PF with minimalistic resampling in representing the true
posterior pdf (computed directly from the Kalman filter as
a benchmark) according to the Kolmogorov-Smirnov (KS)
statistic [16] is tested. For this we de-mean and de-correlate
the final set of weighted particles using the Kalman mean and
covariance. If indeed the particles are truly representative of
the posterior, then the resultant will be a new set of particles
with zero mean and unit covariance. This can be observed
by comparing the cumulative distribution function (CDFs) or
the weights with the new set and the CDF of the standard
Gaussian pdf and then computing the maximum misfit between
them, conventionally called the KS statistic (used in [15]).
A low KS value is practically desirable. Fig 4 shows the
CDFs for the minimalistic resampler with Th = 0.2 and the
popularly used systematic resampler. It can be observed that
the proposal gives a unbiased posterior approximation as does
the systematic resampler. It does not overshoot or undershoot
at the tails implying that every particle is truly representative
of the posterior. Fig 5 shows the KS statistic versus the number
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Fig. 4. The CDFs of the PFs plotted against the CDF of the standard
Gaussian pdf (averaged over T = 100 time steps).

of particles. The proposed minimalistic resampler performs
equivalently to the soft systematic resampler and closely to the
computationally expensive systematic and residual resamplers.
The higher KS values in the partial deterministic and Metropo-
lis resamplers could be attributed to reduced communication
within the particles. Low KS values indicate that the proposed
resampler agrees closely to the Kalman filter posterior.

V. EVALUATION USING A TRACKING EXAMPLE

The proposed resampling method is now applied to a non-
linear bearings-only tracking application [2], [5]. The target
state is defined as xt = (xt, vxt

, yt, vyt
)> ∈ R4 where the

first and third entries are the x − y target positions and the
remaining are the corresponding velocities. The target moves
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in the x − y plane via constant velocity (CV) motion model
described as

xt =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

xt−1 +


0.5 0
1 0
0 0.5
0 1

at

for t = 1, · · · , T = 40, where at ∼ N (0, τ2I2), τ2 = 0.052.
The sensor located at the origin (0, 0) observes the target
heading via the observation model given by

yt = tan−1(yt/xt) + et

where et = N (0, σ2 = 0.0052). The initial target
state is xt=0 = [−0.05, 0.001, 1.7,−0.055]>. The PFs are
initialised with mean [−0.4, 0, 1.4,−0.5]> and covariance
diag(0.5, 0.005, 0.3, 0.01). Figs 6 and 7 respectively illustrate
the particles using systematic resampling and the proposed
minimalistic resampling at different time steps. The systematic
resampler is set as a benchmark with N = 10000. The
proposed method is run with N = 2000 and Th = 0.2. It can
be observed that the particle clusters in the proposed method
conform to the particle clusters in the systematic resampler.
Fig 8 shows the RMSE versus the number of particles N and it
can be seen that the proposed resampler compares favourably
with the conventional resamplers. The time comparison is
shown in Fig 9 and it can be observed that the proposed
resampler exhibits orders of magnitude speed efficiency over
the systematic resampler. At N = 500, 5000 particles by
virtue of minimal particle interaction, the proposed method is
nearly 3.8, 15.78 times faster than systematic resampling while
maintaining equivalent tracking accuracy. In this analysis, it
can be observed that the partial deterministic resampling is
computationally very efficient. Unlike the proposed method,
the partial deterministic resampler uses two thresholds to deter-
mine large weight and low weight particles. It can be observed
in Fig 2 that the method has higher error in large weight
particles than the proposed method due to the way the large
weights are redistributed within. Moreover the performance
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Fig. 6. The particles at times t = 1, 3, 5, 10, 15, 20, 25, 30, 35, 40 for
the bearings-only example for one realisation.
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Fig. 7. The particles at times t = 1, 3, 5, 10, 15, 20, 25, 30, 35, 40 for
the bearings-only example for one realisation.

of the method is sensitive to the choice of the thresholds, that
being said, this analysis helps to see that the method is nearly
comparable to the minimalistic resampler in terms of speed.
For an unbiased approximation to the posterior, the number
of particle replications should be nit = Nw̄i

t, i = 1, ..., N .
This is called the proper weighting condition [4]. A reliable
measure of the resampling quality is the variance in the
distance between the integral approximations (4) and (5). This
variance is given by (see [5])

E
[ N∑

i=1

nit −Nw̄i
t

N
δ(xt)

]
. (12)

By restricting nit to lie close to Nw̄i
t for i = 1, · · · , N reduces

the variance and hence satisfies proper weighting criterion.
Fig 10 shows this variance versus the number of particles
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with Th = 0.2 and it can be see that the variance is close to
zero indicating that the proposed resampler indeed replicates
particles with a close-to-proper-weighting condition and hence
gives an unbiased estimate of the posterior.

VI. CONCLUSION

This paper proposed a fast resampling scheme for the parti-
cle filter. The key innovation is to minimise the communication
within the particles by deterministically replicating only the
large weight ones. The proposal compares equivalently to
the conventional systematic resampler in giving an unbiased
representation of the true posterior and tracks accurately. This
is illustrated using simulations on linear and nonlinear models.

REFERENCES

[1] P.M. Djuric, J. Zhang, T. Ghirmai, Y. Huang, and JH Kotecha, “Applica-
tions of particle filtering to communications: A review,” in Proc. IEEE
European Signal Processing Conference, pp. 1–4, 2002.

1000 2000 3000 4000 5000 6000 7000 8000
-5e-15

-4e-15

-3e-15

-2e-15

-1e-15

0

Number of particles

R
e
s
a
m

p
lin

g
 q

u
a
lit

y

Prop minimalistic

systematic

partial det

residual

Fig. 10. The resampling quality versus N .

[2] N. Gordon, David J. Salmond, and Adrian FM Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” In IEE proceed-
ings F (radar and signal processing), vol. 140, no. 2, pp. 107–113. 1993.

[3] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo,
and J. Miguez, “Particle filtering,” IEEE Signal Proc. Mag., vol 20, no.
5, pp. 19–38, 2003.

[4] R. Douc, and O Cappe, “Comparison of resampling schemes for particle
filtering,” In Proc. IEEE Symp. on Image and Signal Processing and
Analysis, pp. 64–69, 2005.

[5] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” Proc. IEEE Nonlinear Statistical Signal Pocessing
Workshop, pp. 79–82, 2006.

[6] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian non-
linear state space models,” J. of Computational and Graphical Statistics,
pp. 1–25, 1996.

[7] J. Carpenter, P. Clifford, and P. Fearnhead, “An improved particle filter
for nonlinear problems,” IEE Proc. Radar, Sonar and Navigation, vol.
146, pp. 2–7, 1999.

[8] J. Liu, and R. Chen, “Sequential Monte Carlo Methods for Dynamic
Systems,” J. of the American Statistical Association, vol. 93, pp. 1032–
1044, 1998.

[9] M. Bolic, Petar M. Djuric, and Sangjin Hong, “Resampling algorithms
for particle filters: A computational complexity perspective,” Proc.
EURASIP J. on Advances in Signal Processing, pp. 2267–2277, 2004.

[10] P. Fearnhead, “Particle filters for mixture models with an unknown
number of components,” J. Statistics and Computing, vol. 14, no. 1,
pp. 11–21, 2004.

[11] S. Barembruch, A. Garivier, and Eric Moulines, “On approximate
maximum-likelihood methods for blind identification: How to cope with
the curse of dimensionality,” IEEE Trans. Signal Processing, vol 57, no.
11 pp. 4247–4259, 2009.

[12] P.B. Choppala, P.D. Teal, and M.R. Frean, “Soft systematic resampling
for accurate posterior approximation and increased information retention
in particle filtering,” In Proc. IEEE Workshop on Statistical Signal
Processing, pp. 260-263, 2014.

[13] L. M. Murray, Anthony Lee, and Pierre E. Jacob, “Parallel resampling
in the particle filter, ” J. of Computational and Graphical Statistics, vol
25, no. 3, pp.789–805, 2016.

[14] Mehdi Chitchian, Andrea Simonetto, Alexander S. van Amesfoort,
and T. Keviczky, “Distributed Computation Particle Filters on GPU
Architectures for Real-Time Control Applications,” IEEE Trans. Control
Systems Technology, vol 21, no. 6, pp. 2224–2238, 2013.

[15] P.B. Choppala, P.D. Teal, and M.R. Frean, “Particle filter parallelisation
using random network based resampling,” In Proc. IEEE International
Conference on Information Fusion (FUSION), pp. 1–8, 2014.

[16] N. Smirnov, “Table for estimating the goodness of fit of empirical
distributions,” in J. Annals of Mathematical Statistics, pp. 279–281,
1948.


