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Abstract—The particle filter is known to be a powerful
tool for estimating hidden Markov processes in nonlinear and
nonGaussian state space models. The filter involves generating
new particles from old ones, from regions of high importance in
the state space using a proposal distribution and then weighing
them using the incoming observation. However a poor choice
of the proposal distribution may migrate the new particles into
regions that do not contribute to the posterior and hence lead
to one particle accumulating all the weight (termed particle
degeneracy). This degeneracy is overcome using the resampling
step that eliminates those particles with low weights and replaces
them by those with large weights. However this resampling step
is a computationally demanding operation. In the literature,
the methods that speed up the particle filter, like the Gaussian
particle filter, trade tracking accuracy with speed while methods
that sample particles from high importance regions, like the
auxiliary particle filters and lookahead particle filters, trade
speed with accuracy. In this paper we propose a simple lookahead
sampling scheme. Here the particles that fall into high importance
regions are predetermined (seen ahead) and then propagated
in copies to make up for those that should be discarded. This
strategy avoids the resampling step and consequently leads to
high speed and accuracy. Using two nonlinear models, we show
the tracking efficiency of the proposed method.

Index Terms—Bayesian state estimation, particle filter, looka-
head sampling, sorted weights, RMSE

I. INTRODUCTION

The Bayesian state estimation is an important solution to
estimate hidden dynamic target states and is used widely in
target tracking applications [1], [2]. The popular Kalman filter
provides an optimal estimate of the state of the target and
the associated uncertainty for Bayesian estimation in linear
Gaussian systems [3]. However for nonlinear and nonGaus-
sian systems, a closed form solution cannot be derived due
intractable integrals involved in the estimation process. This
intractability is overcome using approximate solutions. An
efficient Bayesian approximation is the particle filter (PF)
which approximates the posterior probability density func-
tion (pdf) of the target state by a set of weighted particles
[4], [5]. The particles within the PF can be understood as
weighted point explorers that localise themselves near the
regions of high importance, i.e., the regions that contribute

to the posterior. The first step in the PF is the sequential
importance sampling (SIS) that specifies the process of sam-
pling new particles at each time step from the previous ones
and updating their weights. The SIS step can sample particles
from regions of high importance only when it leverages the
incoming observation within the sampling process. However
this leveraging is difficult and not straighforward. Therefore
SIS by itself, encounters degeneracy, a problem in which, after
a few iterations, all but one particle have negligible weights,
which is a direct consequence of not sampling from high
importance regions. This is overcome in the second step, the
resampling, that eliminates particles with negligible weights
and replaces them by those with large weights [6], [7].

Several methods have been proposed to predict particles from
regions of high importance by conditioning the incoming
observation in the SIS process. The key idea of these methods
is to sample a set of particles using the previous ones, weigh
them using the incoming observation and then use the weights
to sample a final set of weighted particles. The most popular
method in this category is the auxiliary particle fiter (APF) [8].
The filter samples a lookahead set of particles and computes
their weights, then resamples the lookahead set and uses
those resampling indices to propagate the old particles to
the next time step. The recently proposed improved APF
(IAPF) described the APF within the multiple importance
sampling framework and proposed a general framework to
compute the weights from the lookahead set of particles [9],
[10]. The IAPF has shown improved tracking accuracy over
the APF, especially in low noise scenarios. Other lookahead
strategies include the adapted placement and others [11], [12].
These methods acheive high tracking accuracy by virtue of
sampling good particles. However they involve the computa-
tionally demanding resampling step and additional sampling
and weighing steps and hence trade speed for accuracy.

The key property of the PF is that using a large number of
particles will ensure them being sampled from regions of high
importance and hence the weighted particle approximation will



approach the true posterior pdf. However the resampling step
in the particle filter is a computationally demanding sequential
operation and thus prohibits the use of a large number of par-
ticles [13]. The recently proposed fast resampling approaches
— the Metropolis [14], distributed computing [15] and the
random network [16] resamplng methods accelerate the PF
by reducing the communication within the particles. However
this reduction in inter-particle communication deteriorates the
tracking performance. The Gaussian PF totally alleviates the
need for resampling as it propagates only the first and second
moments of the Gaussian densities using weighted samples
[17]. However the filter is limited to additive Gaussian systems
and tracks poorly when the diffusion over the state transition
density is large. Overall these methods trade accuracy for
speed.

In this paper, we propose a simple lookahead particle filter that
is computationally efficient and operationally accurate. The
key idea here is to lookahead in time by sampling particles and
weighing them using the incoming observation. This looka-
head set is then sorted in accordance to its weights. Then a few
large weight particles (that lie in regions of high importance)
are deterministically selected to be propagated forward. This
deterministic selection avoids the need to resample and hence
the method gains tremendously in speed. These propagated
particles ensure good tracking accuracy as the new lookahead
SIS leverages the observation in the propagation step.

The rest of the paper is organised as follows. Sections II and III
sets the notation and presents the Bayesian estimation and PF
methods. This is followed by the proposed weighted sorting
lookahead PF in section IV and evaluation results in section V.
We finally conclude in section VI.

II. BAYESIAN ESTIMATION

The target state (or signal) of interest x; € R% at time
instant ¢ € N is a hidden Markov process with initial dis-
tribution p(x:—o) and the Markov state transition p(x:|x:_1)
for time steps t = 1,...,T with dx denoting the dimension-
ality of the target. The sensor observations y;, € R% are
conditionally independent given the state variable x; and is
given by the observation density p(y:|x;) where dy denotes
the dimensionality of the observation. The set of states and
the observations are denoted as x1.4 = {xi,---,x:} and
vit = {¥1, - ,¥:}. This target state transition and sensor
observation models together constitute the discrete time state
space model given by

x¢ = f(X¢—1,a¢) (D
Vi = h(x¢, e) 2)

where the (possibly) nonlinear functions f(.) and h(.) respec-
tively are the state transition and sensor observation functions
and a; and e; respectively are the state transition and obser-
vation noise.

The aim of Bayesian state estimation is to estimate sequen-
tially in time the pdf of the hidden target state using all

available observations. In the Bayesian context, if the posterior
pdf p(x¢—1|y1.t—1) at time ¢ — 1 is available, then the aim
is to recursively estimate a state prediction pdf p(x;|y1..—1)
using (1) and a posterior pdf p(x;|y1.:) using (2). Using these
densities the target state can be estimated for any given model
parameters. This Bayesian recursion is given by

p(xt—1ly1i—1) — p(xelyre-1) — p(xtly1:t)

—_——— —_——— —_———

posterior at time ¢t — 1 prediction at time ¢ updated posterior at time ¢
3)

where the predicted and updated pdfs are

P(Xe|yi—1) = /p(Xt|Xt—1)p(Xt—1\y1:t—1) dx;—1 4

p(Yt |Xt)p(Xt|Y1:t—1)
p(Yt|y1:t71)
X p(Yt|Xt)p(Xt|Y1:t71) &)

P(Xt|Y1:t) =

Once the updated pdf is available, the hidden target state can
be estimated using the expected a posteriori (EAP) [2] as

£ = E(p(x¢ly1.e)) = /ti<xt|YI:t)dxt 6)

III. PARTICLE FILTERING METHODS

In this section we briefly describe the conventionally
used PF methods. The posterior pdf of the target state
p(x¢—1|y1:t—1) at time ¢t —1 is represented by a set of particles
and their corresponding weights {x:_;,w!_;}¥ ,, where i is
the particle index and [V is the total number of particles. This
weighted set representation is given by the sum of weighted
delta functions as

N
p(xt-1ly14-1) ~ sz_ﬂs(xt—l —X{_1) @)
i=1
At time step ¢, the PF generates a new set of particles from
the old ones using a proposal distribution as

x; ~q(xe|xi_1,y¢), i=1,--- N (8)

The new particles are now representative of the predicted pdf
in (4) as

Zwt 18(x; — ) )

The new particles are then weighted as

Xt|y1t 1

i p(yt|xi)p(xi‘ngl)
q(xilx;_1, 1)

o< wy_yp(yelx;), i=1,--- N

(10)

(1)
where (11) follows by taking a convenient assumption that
the particles are drawn from the state transition density as
q(x¢|xi_1,y¢) = p(x¢|xi_;). This normalised weighted set
of particles is representative of the posterior pdf at time ¢ as

E wt Xt_xt

Xt|y1t (12)



After a few iterations, the discrepancy between the weights
increases, leading to degeneracy. The solution to this is the
resampling step wherein those particles that have negligible
weights are replaced by exact copies of other particles that

have larger weights, i.e., for ¢ = 1,--- N, we sample an
index j(i) distributed according to the probability P(j(i) =
m) = w",m = 1,---, N and replace xi = x)” and set
wi =1/N.

The proposal density q(x;|x! ;,y:) in (8) aims to draw
particles from the regions of importance. This facilitates the
particles to lookahead in time using y; and explore the right
state space and thus avoid particle degeneracy. That is, the
better the proposal density, the better placed the particles
and the lesser the need to resample. However it is difficult
to leverage the observation y; directly in the proposal ¢(.).
Several lookahead strategies have been proposed to this effect.
The most popular is the APF and its variants that accomplishes
lookahead filtering as follows. Here the particles are propa-
gated forward as vi = E(x;|x}_;) and weighted according
to wi = w!_,p(y:|vi). Resampling this normalised weighted
lookahead set to obtain a set of indices j(i) fori =1,--- | N
such that P(j(i) = m) = @} will indicate that set of particles
at time ¢ — 1 whose propagation to time ¢ will place them in
regions of high importance. Hence the new particles will be
generated as in (8) as

xi (i), i =1, N (13)
Following (10) the weights are updated as
, x!
wi — p(yelxt) (14)

C b
and normalised. The denominator compensates for the looka-
head proposal described earlier. The recently proposed IAPF
generalises the APF scheme and has demonstrated improved
performance.

These lookahead schemes generate particles from regions of
high importance thus leading to improved accuracy but fail
to avoid the computationally intensive resampling step. On
the other hand, the fast resampling PFs suffer from reduced
tracking accuracy as they limit the communication within the
particles. In the next section, we propose a simple lookahead
PF that overcomes these two problems.

IV. PROPOSED WEIGHT-SORTED LOOKAHEAD PF

Consider a set of particles {xi_;,w!_,})¥ | representing the
posterior at time ¢ — 1. These particles are propagated to time ¢
using the state transition density as vi ~ p(x;|x!_;) and then
weighted according to ai o wi_;p(y¢|vi) fori=1,--- N.
Then these unnormalised weights are sorted from the largest
to the smallest and the particles are also rearranged according

to the sorted weights to obtain the sorted set
Via 3N, at >al i=1,--- N (15)

These particles weighted in accordance to the observation are
termed the lookahead particles as they will be used to obtain

a final set of particles placed in regions of high importance.
We then compute the ratios

vi=allal,i= - N (16)

It can be observed that the vector 'V will be a monotonically
decreasing function. We then deterministically select those set
of indices whose sorted-weight-ratio is greator than a certain
threshold 7}, according to

m={j=1,-,M:~ >T} (17)

It is apparent that the first M weighted particles are indica-
tive of being located in regions of high importance and the
remaining N — M are not. Therefore the N — M small weight
particles will be eliminated. For this we obtain a index vector

{3()i=1,. N} = { My ’"t,’"t<1"“ IV = ML\]\;D}

[IN/M ] times
(18)

such that the first M indices in the set 7, are replicated until the
cardinality |{j(?);=1,... v }| = IN. The final weighted particles
are obtained, analogous to (8), by setting

i =i wj=al" =1, N (19)

The condition that N = M implies that all the particles lie
within a region that contributes to the posterior and therefore
they can be straighforwardly retained. When M < N, the
N — M particles and their weights in the sorted set in (15) will
be eliminated. To fill for the eliminated particles and weights,
the retained M particles are replicated | N/M | times and the
remaining § = N — M |N/M| are replicated by the first 3
particles in the sorted set, to fill the set with N weighted
particles.

It can be understood that this selection and replication scheme
in (18) and (19) leverages on the incoming observation and
fills the particle set with high weight particles such that all of
them lie in regions of high importance. However, the condition
M < N, at any time step, will lead to too many replications
and thereby loss of particle diversity (conventionally termed
sample impoverishment [5]). To avoid this, we propose to
perturb the M + 1 to N new particles as

xi=x,+N(0,€),i=M+1,--- N (20)

where € <. This ensures richness in the particles while
propagating them to regions of high importance. When the
N — M particles are perturbed their corresponding weights
may be recalculated as

p(yelx)
p(yivi®)
The final normalised weighted particle set {x¢, i}, now
represents the posterior at time ¢ and the state estimate can
be calculated from (6) as x; = Zfil w;X;. The choice of T},

becomes critical to the performance of the method. For now,
the value is chosen empirically and set to T), € (0.001,0.1)

i=M+1,---,N @1)

T
Wy =



based on the model of study. The key merits of this proposal
is that we completely bypass the need to resample and instead
deterministically chose a set of particles for propagation; the
only additional computation comes from sorting with order
of complexity O(N) and recalculating the N — M weights.
Moreover the proposal achieves good tracking accuracy by
virtue of sampling from the regions of high importance.

V. EVALUATION STUDY

In this section we use two nonlinear models to evaluate the
performance of the proposed method in terms of the root mean
square error (RMSE) and computational time (in seconds).
Consider the nonlinear state space model given by
251’,5,1

P14 Seos(1.2t
3t i, Tocos(l2) +a

Yt = tan_l(xt) + et

Ti—1

Ty =

where the state transition noise and the observation noise re-
spectively are a; ~ N(0,72) and e¢; ~ N(0,0?). We compare
the proposed sorted-weighting lookahead PF (WSLAPF) with
the standard PF, the APF, the IAPF and the GPF. The total
number of time steps are 7' = 200, the initial distribution is
p(x4—0) = N(5,1), 72 = 5 and the results are averaged over
1000 Monte Carlo runs. In Fig. 1 we present the RMSE versus
the observation error precision with the number of particles
N = 100 and the WSLAPF threshold set to 7;, = 0.01.
Fig. 2 shows the computational time versus the number of
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Fig. 1. The RMSE versus the error precision 1/02.

particles with observation noise variance o> = 1. By observing
both the fiigures, it can be seen that the proposed method
compares favourably with the traditional PFs in accuracy and
demonstrates tremendous computational advantage by virtue
of bypassing the need to resample every time step. The
GPF, albeit being the fastest among all, suffers in tracking
accurately and this inaccuracy is more pronounced when the
transition density diffusion over the states determined by 72
is large as chosen for this example. The APF, as referred in

[10] tracks poorly in low noise scenarios, as chosen in this
example. The IAPF demonstrates good tracking accuracy but
is computationally more demanding owing to its additional
weighing and resampling steps.
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Fig. 2. The computational time versus the number of particles V.

To put this time-error comparison in full perspective, we
plot the time-scaled-RMSE (TxRMSE) (Computational time
x RMSE) for N = 100 versus the error precision in Fig. 3. It
can be observed that the proposed method shows tremendous
gain over the existing PFs and its TXRMSE does not increase
polynomially in high noise conditions. The proposed method
exhibits nearly 2 times improvement over the PF and the APF
and 5 times over the IAPF. Although the GPF shows the best
TxRMSE, the filter is limited to additive Gaussian models
only. We now show in Fig. 4 the effect of the choice of
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Fig. 3. The time-scaled-RMSE versus the error precision 1/c2.

the threshold on the tracking performance with 02 = 1 and
N = 100. Low T} <« will lead to small weights gathering



into the particle set and high 7}; >> with lead to sample
impoverishment. It can be observed that there is an optimal
minimum for 7}, € (0.02,0.04) and that a carefully chosen
small value would ensure good tracking performance.
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Fig. 4. The RMSE versus the threshold T},.

We now evaluate the proposed method on a 1-D image
observation model for tracking a single moving target. This
example is critical for many tracking applications using
radar/sonar/image data. The target state follows a random walk
as Xy = Xy—1 +ag,a; ~ N(O, 72). The observation model, as
described in [18], is given by

yi(j) = he(j) + er, e ~ N(0,07%)
B IAS(j)e (_ (s(j) —x¢)?
= Xp - 7

PESS) 25 )Jret’J:l"”’K

where s(j) is the jth pixel in the image having a total of
K pixels. The image observes a static region of surveillance
defined by a grid as s(j) € (Smin, Smax) With width of each grid
point being As(j) = 1. We interpret h;(j) as the contribution
of the target x; to the intensity at the jth pixel and blurred by
a factor of X.

In Fig. 5 we illustrate the validity of our proposal using a
simulation for 7" = 100 time steps and the number of particles
N = 200. The image observations are shown on the top
panel and the filter estimates are shown on the bottom. It
can be seen that the image observations are noisy (the error
variance 02 = 0.2) so much so it is difficult to detect the
target by looking at one observation as depicted in Fig. 6.
The actual target follows a sinusoidal path. It can be observed
that the proposed PF and the conventional PFs track the target
accurately and also maintains lock during high manoeuvres.

We now test the time-scaled-RMSE of the proposed method
for the nonlinear image observation model for 7' = 100 time
steps (the APF and the GPF are omitted in this example for
convenience). The number of particles is N = 200. The
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Fig. 5. Illustration of the tracking of a highly manoeuvring target from noisy
1-D image observations. The top panel shows the observations over time and
the bottom panel shows the filter estimates.
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Fig. 6. The 1-D image measurements for ¢ = 25, 50, 75, 100 time steps from
left to right panels. Along the x-axis is the surveillance region and along the
y-axis is the intensity. The red marker is the actual target position.

state transition noise variance is 72 = 0.2. The WSLAPF
threshold is 7), = 0.001. The reported results are averaged
over 500 Monte Carlo runs. Fig. 7 shows the RMSE versus the
error precision. It can be observed that the proposed method
tracks fairly accurately in low noise conditions and becomes
inaccurate in high noise conditions. This could be due to
more small weight samples being included into the particle
lot. However it can be seen that the error is not substantially
worse compared to the conventional PFs.
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Fig. 7. The RMSE versus the error precision 1/02.

Fig. 8 shows the TxRMSE versus the error precision. It can
be observed that poor track performance of the proposed
WSLAPF in high noise conditions is offset by its fast compu-
tation. Now its performance is comparable to the standard PF
and is nearly 3.5 times superior to the IAPF at 02 = 1/5.
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Fig. 8. The time-scaled-RMSE versus the error precision 1/02.

The key challenges in the proposed WSLPAF observed in this
evaluation study is that the choice of the threshold 7}, becomes
critical for accurate tracking. A detailed study on this choice
will be done in the future. The key merits of our proposal are
accurate tracking by virtue of sampling from regions of high
importance (weights) and high speed computation by virtue
of avoiding the resampling step. These merits are numerically
shown in the TXRMSE plots for the two nonlinear models.

VI. CONCLUSION

In this paper, we presented a novel lookahead strategy for
the particle filter. Here the previous set of particles are propa-
gated forward in time by leveraging the incoming observation
in the propagation step via a sorting and deterministic selection
scheme. The proposal ensures particles to lie in regions of high
importance and hence aids in accurate tracking. The proposal

also avoids the need to resample thus being computationally
efficient. The tracking accuracy and time efficiency of our
proposal are evaluated using numerical simulations.
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