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Abstract—The Kalman filter is popularly known to be an
optimal recursive implementation of the Bayesian prediction and
correction in the sense that it minimises the estimated error
covariance. The filter has been originally derived in this error
minimising framework and there is extensive literature on the
same. The Kalman filter has also been derived under other
frameworks, like the maximum likelihood approach, etc., which
all converge to the true posterior. In this paper we present a
purely Bayesian filtering approach to the Kalman filter. We first
build an analogy to the principles of Bayesian estimation and then
present a step-by-step derivation for the Kalman filter following
the Bayesian principles. From this derivation, we show that the
Kalman filter gives a tractable solution to the Bayesian filtering
process by computing the underlying probability densities exactly.
This derivation is known to some in the research community but
no formal article in the literature presents it in detail. This paper
fills this gap and will be a good read for Bayesian enthusiasts.
The filter is simulated in the proposed framework on a simple
4-D linear Gaussian model.

Index Terms—Bayesian state estimation, Kalman filter, linear
Gaussian models, prediction, update.

I. INTRODUCTION

The Bayesian state estimation is an important solution to
estimate hidden dynamic target states and is used widely
in radar/sonar tracking applications [1]. The Bayesian state
estimation approach sequentially builds a posterior probability
density function (pdf) of the target state conditioned on all the
sensor observations by predicting a probable target state from
the state transition model and then weighing that prediction
using the sensor observation model [2]. The Kalman filter,
proposed by R.E. Kalman in 1960, is a popular Bayesian fil-
tering approach that provides an analytical solution to estimate
the target state in a way that minimises the error associated
with the estimation [3]. Therefore, the filter is theoretically
optimal for linear Gaussian state space models. Despite the
filter being limited to linear Gaussian models, it continues to
dominate Bayesian state estimation applications inluding the
recent search for the missing aircraft MH370 [4].

There are different and varied mathematical perspectives to the
Kalman filter. The filter can be seen as a least square estimator

and also a minimum variance estimator under Gaussian as-
sumptions that minimises the mean square error (MSE) in the
estimated parameters [5]. The founding principles for Kalman
filtering have been adopted from least squares estimation and
then applied to the problem of sequential estimation [6], [7].
That said, the Kalman filter has been derived from different
perspectives. The filter was first derived using orthogonal
projection method by R.E. Kalman in [8] and was later shown
to be equivalent to the time variant Weiner filter [9], [10]. The
innovations approach to the Kalman filter derivation was first
presented in [11] and thereafter several theoretical implemen-
tations were developed for minimising the distance between
the predicted target state translated to the observation space
and the observation itself by scaling with the Kalman gain.
The Bayesian approach to the innovations based Kalman filter
derivation is recently given in [12]. More recently, the Kalman
filter was derived using the maximum likehood estimation and
Newton optimisation methods but here it requires a carefully
chosen initial guess of the target state [13], [14].

The Kalman filter and its several variants generally used in the
literature provide an optimal recursive implementation of the
prediction and the correction in the sense that it minimises the
estimated error covariance. However a Kalman filter derivation
in a purely Bayesian sense is not readily available as a research
article. This paper fills that gap. In this paper, we present a
purely Bayesian perspective to the Kalman filter and derive it
as an analogous to the Bayesian sequential filter. The rest of
the paper is organised as follows. Section II sets the notation
and gives a detailed derivation to the Bayesian state estimation
process. Section III presents the Bayesian Kalman filter in a
purely Bayesian perspective. This is followed by a simulation
study in section IV and concluding remarks in section V

II. BAYESIAN STATE ESTIMATION

In this section we set the notation for the discrete time
state space model and derive the Bayesian state estimation
methodology [15]. The state of the target at time t, denoted as
xt ∈ Rdx , characterises all the dynamics of the target like the



position, velocity, etc. This state evolves in time via a hidden
Markov process defined as

xt = f(xt−1,at) (1)

where dx is the dimension of the target state, f(.) is a Markov
function the describes how the target heads from t−1 to t and
at is the noise associated with the target heading. The sensor
observation of the hidden target state, denoted as yt ∈ Rdy ,
is obtained using the observation model as

yt = h(xt, et) (2)

where dy is the dimension of the observation vector,
h(.) is observation function and et is the observation
noise. The set of target states and measurements are de-
noted as x1:T = {x1,x2, . . . ,xt, . . . ,xT } and y1:T =
{y1,y2, . . . ,yt, . . . ,yT }. This state space model is pictorially
shown in Fig. 1. The hidden time varying state xt of the system
at time t can be observed as yt by the observation model.

x0 x1 x2 · · · xT

y1 y2 · · · yT

Figure 1. Pictorial representation of the conventional state space model.

The aim of Bayesian state estimation is to estimate the hidden
target state over time using all available observations, i.e.,

x0 −→ x1|y1 −→ . . . −→ xT−1|y1:T−1 −→ xT |y1:T (3)

In a probabilistic sense, we aim to obtain the pdfs

p(x0) −→ p(x1|y1) −→ . . . −→ p(xT |y1:T ) (4)

That is, at time step t, we aim to obtain the posterior pdf
p(xt|y1:t) [15], [16].

Defn. II.1: Bayesian filtering

Lemma: If the pdf at time t − 1, p(xt−1|yt:−1) is
available, then the pdf at time t is given by

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1

Proof: In a Bayesian sense, the state space estimation (also
called filtering) is two-fold, (a) prediction, and (b) update. If
p(xt−1|y1:t−1) is available, then this two-fold estimation is
described as

p(xt−1|y1:t−1)︸ ︷︷ ︸
posterior at time t− 1

−→ p(xt|y1:t−1)︸ ︷︷ ︸
prediction at time t

−→ p(xt|y1:t)︸ ︷︷ ︸
updated posterior at time t

(5)

where the predicted pdf is derived as

p(xt|y1:t−1) =

∫
p(xt,xt−1|y1:t−1) dxt−1

(a)
=

∫
p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1) dxt−1

(b)
=

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 (6)

where
(a)
= follows from P (A,B) = P (A|B)P (B),

(b)
= follows

because from the state transtion density we infer that xt is
independent of y1:t−1 given xt−1 as xt |= y1:t−1|xt−1.

The updated pdf is derived as

p(xt|y1:t)
(a)
=

p(y1:t|xt)p(xt)

p(y1:t)

=
p(yt,y1:t−1|xt)p(xt)

p(yt,y1:t−1)

(b)
=

p(yt|y1:t−1,xt)p(y1:t−1|xt)p(xt)

p(yt|y1:t−1)p(y1:t−1)

(c)
=

p(yt|y1:t−1,xt)p(xt|y1:t−1)p(y1:t−1)p(xt)

p(yt|y1:t−1)p(y1:t−1)p(xt)

=
p(yt|y1:t−1,xt)p(xt|y1:t−1)

p(yt|y1:t−1)

(d)
=

p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(7)

(e)
∝ p(yt|xt)p(xt|y1:t−1) (8)

where
(a)
= follows from Bayes’ rule P (A|B) =

P (B|A)P (A)

P (B)
,

(b)
= follows from P (A,B) = P (A|B)P (B),

(c)
= follows from

applying the Bayes’ rule on p(y1:t−1|xt),
(d)
= follows because

yt |= y1:t−1|xt and
(e)
∝ follows by neglecting the normalising

constant. The denominator in
(d)
= is the normalising constant

and is given by

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt (9)

In summary, if the posterior pdf at time t − 1 is known as
p(xt−1|y1:t−1) then the posterior pdf at time t is obtained by
substituting (6) and (9) in (7) as

p(xt|y1:t) =
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1∫
p(yt|xt)p(xt|y1:t−1)dxt

(10)

=
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1∫

xt,xt−1
p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1) d(xt,xt−1)

(11)

∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1

(12)

The equation (12) which summarises the principle of Bayesian
state estimation implies that to move from t − 1 to t, we



predict a hypothetical target state xt at time t using the state
transition pdf p(xt|xt−1) and then integrate out the previous
target state xt−1. Once the prediction is available, the belief
that the predicted hypothesis is close to the actual target state
is then computed by the measurement pdf p(yt|xt), and any
correction in the hypothesis, if required, is applied therein.
This sequential two-fold estimation forms the basis for the
Bayesian filtering process.

Once the updated pdf is available, the hidden target state can
be estimated using the well known expected a posteriori (EAP)
[2] as

x̂EAP
t = E(p(xt|y1:t)) =

∫
xtp(xt|y1:t)dxt (13)

or the maximum a posteriori (MAP) as

x̂MAP
t = arg maxxp(xt|y1:t) (14)

In the next section, we present the derivation for the Kalman
filter in the Bayesian recursion set up described in this section.

III. THE KALMAN FILTER

The Kalman filter, which is by far the most popular
Bayesian estimation method, operates by assuming that the
pdfs are Gaussian in nature and the underlying state space
model is linear (or closely linear) [3], [16]. The filter is
originally derived as a minimum mean square error estimator
that minimises the distance between the predicted hypothesis
and the measurement via a scaling parameter called the
Kalman gain. This derivation is the most studied approach
in the literature. In this section, we present a Kalman filter
derivation that is purely Bayesian is its framework.

Consider a linear Gausian state space model described as

xt = f(xt−1,at) = Fxt−1 + Gat (15)
yt = h(xt, et) = Hxt + et (16)

where in (15), F is the state transition matrix, G is the control
matrix and the state transition noise at ∼ N (0,Q) is zero
mean white Gaussian with covariance Q. In (16), H is the
matrix that translates the target from the state space to the
observation space and the observation noise et ∼ N (0,R) is
zero mean Gaussian with covariance R. The noise vectors are
assumed to be independent and identically distributed (i.i.d).

In the Kalman filter, the posterior pdfs in the Bayesian scheme
in (5) are Gaussians and are denoted as [16]

p(xt−1|y1:t−1) = N (E(xt−1|y1:t−1),V(xt−1|y1:t−1))

= N (x̂(t− 1|t− 1), Ŝ(t− 1|t− 1)) (17)
p(xt|y1:t−1) = N (E(xt|y1:t−1),V(xt|y1:t−1))

= N (x̂(t|t− 1), Ŝ(t|t− 1)) (18)
p(xt|y1:t) = N (E(xt|y1:t),V(xt|y1:t))

= N (x̂(t|t), Ŝ(t|t)) (19)

where (17), (18) and (19) are our notations for the means and
variances of the Gaussians. The Kalman filter hence can be

treated as a sequential estimator that propagates the means and
the covariances of the pdfs over time. That is, if the posterior
at t− 1 is known meaning that the expectation x̂(t− 1|t− 1)
and the covariance Ŝ(t − 1|t − 1) estimates are known, then
it is enough to compute the predicted and updated means and
covariances.

Defn. III.1: Kalman filter prediction

Lemma: If at time t− 1 the covariance Ŝ(t− 1|t− 1)
and expectation x̂(t − 1|t − 1) are known, then the
predicted covariance and expectation are given by

Ŝ(t|t− 1) = FŜ(t− 1|t− 1)F> + GQG>

x̂(t|t− 1) = Fx̂(t− 1|t− 1)

Proof: The predicted expectation is derived as follows,

x̂(t|t− 1) = E (xt|y1:t−1)

= E ((Fxt−1 + Gat)|y1:t−1)

(a)
= E (Fxt−1|y1:t−1) + E (Gat|y1:t−1)

(b)
= F E (xt−1|y1:t−1) + G E (at|y1:t−1)

(c)
= Fx̂(t− 1|t− 1) + G E (at)

(d)
= Fx̂(t− 1|t− 1) (20)

where
(a)
= and

(b)
= follows from the linearity property of

expectation E(nA + mB) = nE(A) + mE(B),
(c)
= follows

because at is independent and
(d)
= follows because E(at) = 0.

Then the predicted covariance is derived according to

Ŝ(t|t− 1) = V (xt|y1:t−1)

= V ((Fxt−1 + Gat)|y1:t−1)

(a)
= V (Fxt−1|y1:t−1) + V (Gat|y1:t−1)

(b)
= F V (xt−1|y1:t−1) F> + G V (at|y1:t−1) G>

(c)
= FŜ(t− 1|t− 1)F> + G V (at) G>

(d)
= FŜ(t− 1|t− 1)F> + GQG> (21)

where
(a)
= follows from the linearity property of the variance

V(A + B) = V(A) + V(B),
(b)
= follows from the scaling

property of variance V(mA) = m2V(A),
(c)
= follows because

at is independent and
(d)
= follows because V (at) = Q.

Defn. III.2: Kalman filter update

Lemma: If at time t the predicted covariance Ŝ(t|t−1)
and expectation x̂(t|t−1) are known, then the updated
covariance and expectation are given by

Ŝ(t|t) = (H>R−1H + Ŝ(t|t− 1)−1)−1

x̂(t|t) = Ŝ(t|t)(H>R−1yt + Ŝ(t|t− 1)−1x̂(t|t− 1))



Proof: The update step follows from (8) and can be ex-
pressed as

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (22)

= N (Hxt,R)N (x̂(t|t− 1), Ŝ(t|t− 1)) (23)

The measurement density in (23) can be expanded as

p(yt|xt)

= N (Hxt,R)

= exp

(
−

1

2
(yt −Hxt)

>R−1(yt −Hxt)

)

= exp
(
−

1

2

(
y>t R

−1yt − x>t H
>R−1yt − y>t R

−1

Hxt + x>t H
>R−1Hxt

))
= exp

(
−

1

2

(
y>t R

−1yt − x>t H
>R−1yt − x>t H

>

R−1yt + x>t H
>R−1Hxt

))
= exp

(
−

1

2

(
x>t H

>R−1Hxt − 2x>t H
>R−1yt

+ y>t R
−1yt

))
= exp

(
−

1

2

(
x>t H

>R−1Hxt − 2x>t H
>R−1yt + c

))
(24)

Similarly the predicted pdf in (23) can be expanded as

p(xt|y1:t−1)

= N (x̂(t|t− 1), Ŝ(t|t− 1))

= exp
(
−

1

2

(
(xt − x̂(t|t− 1))>Ŝ(t|t− 1)−1

(xt − x̂(t|t− 1)

))
= exp

(
−

1

2

(
x>t Ŝ(t|t− 1)−1xt − x>t Ŝ(t|t− 1)−1

x̂(t|t− 1)− x̂(t|t− 1)>Ŝ(t|t− 1)−1xt

+ x̂(t|t− 1)>Ŝ(t|t− 1)−1x̂(t|t− 1)

))
= exp

(
−

1

2

(
x>t Ŝ(t|t− 1)−1xt − x>t Ŝ(t|t− 1)−1

x̂(t|t− 1)− x>t Ŝ(t|t− 1)−1x̂(t|t− 1)

+ x̂(t|t− 1)>Ŝ(t|t− 1)−1x̂(t|t− 1)

))
= exp

(
−

1

2

(
x>t Ŝ(t|t− 1)−1xt − 2x>t Ŝ(t|t− 1)−1

x̂(t|t− 1)− x̂(t|t− 1)>Ŝ(t|t− 1)−1x̂(t|t− 1)

))
= exp

(
−

1

2

(
x>t Ŝ(t|t− 1)−1xt − 2x>t Ŝ(t|t− 1)−1

x̂(t|t− 1) + c

))
(25)

By substituting (24) and (25) in (23) we obtain

p(xt|y1:t)

= exp
(
−

1

2

(
x>t H

>R−1Hxt − 2x>t H
>R−1yt + c

))
×

exp
(
−

1

2

(
x>t Ŝ(t|t− 1)−1xt − 2x>t Ŝ(t|t− 1)−1x̂(t|t− 1) + c

))
= exp

(
−

1

2

(
x>t
(
H>R−1H + Ŝ(t|t− 1)−1

)
xt

− 2x>t
(
H>R−1yt + Ŝ(t|t− 1)−1x̂(t|t− 1)

)
+ c

))
(26)

Note that the constant terms in (25) and (26) that does not
include the xt term are grouped as some constant c. The whole
idea of expanding the exponentials in (23) and rearranging the
terms as in (24) and (25) to arrive at (26) is to express as a
Gaussian pdf in terms of the random variable xt. By this, we
can then compare with the expanded version of the updated



pdf as

p(xt|y1:t)

= N (x̂(t|t), Ŝ(t|t))

∝ exp
(
−

1

2

(
(xt − x̂(t|t))>Ŝ(t|t)−1(xt − x̂(t|t)

))
∝ exp

(
−

1

2

(
x>t Ŝ(t|t)−1xt − x>t Ŝ(t|t)−1x̂(t|t)

− x̂(t|t)>Ŝ(t|t)−1xt + x̂(t|t)>Ŝ(t|t)−1x̂(t|t)
))

∝ exp
(
−

1

2

(
x>t Ŝ(t|t)−1xt − x>t Ŝ(t|t)−1x̂(t|t)

− x>t Ŝ(t|t)−1x̂(t|t) + x̂(t|t)>Ŝ(t|t)−1x̂(t|t)
))

∝ exp
(
−

1

2

(
x>t Ŝ(t|t)−1xt − 2x>t Ŝ(t|t)−1x̂(t|t)

+ x̂(t|t)>Ŝ(t|t)−1x̂(t|t)
))

∝ exp
(
−

1

2

(
x>t Ŝ(t|t)−1xt − 2x>t Ŝ(t|t)−1x̂(t|t) + c

))
(27)

By comparing (26) and (27) we observe that the coefficient of
x>t (.)xt is the inverse of the covariance. Therefore the updated
covariance is

Ŝ(t|t) = (H>R−1H + Ŝ(t|t− 1)−1)−1 (28)

We also observe that the coefficient of −2x>t (.) is the product
of the precision matrix (inverse of the covariance) and the
mean. Therefore the updated mean can be written as

x̂(t|t) = Ŝ(t|t)(H>R−1yt + Ŝ(t|t− 1)−1x̂(t|t− 1)) (29)

The Kalman filter, thus derived is the optimal Bayesian esti-
mator for linear Gaussian hidden state space models because
it gives a tractable solution to computing the pdfs.

IV. A SIMPLE SIMULATION EXAMPLE

In this section we present a simple 4-D simulation ex-
ample of the Kalman filter. The target state is defined as
xt = (xt, yt, vxt , vyt)

> ∈ R4 where the first two entries
are the x − y positions of the target and the next are the
corresponding velocities. The target moves in the x− y plane
via constant velocity (CV) motion model given by

xt =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xt−1 +


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

at

Here ∆t is the interval between two observations and at ∼
N (0,Q). The observation model is

yt =

[
1 0 0 0
0 1 0 0

]
xt + et

where the observation noise is et ∼ N (0,R).

The Figure 2 shows the Kalman filter estimate for a T = 100
time step run and it can be observed that the filter locks the
target fairly early and tracks it with good accuracy.

Figure 2. The demonstation of the Kalman filter for the linear Gaussian
model.

A measure to test the Kalman filter is to verify if the
estimated covariance converges. Figure 3 shows the estimated
covariances for the position and velocity components and it
can be observed that they indeed converge and thus indicating
that the filter has converged to the true posterior.

Figure 3. The left panel shows the covariance estimates σ2
1,1, σ

2
2,2 corre-

sponding to the position components. The left panel shows the covariance
estimates σ2

3,3, σ
2
4,4 corresponding to the velocity components.

V. CONCLUSION

In this paper, we derived the popular Kalman filter in a
purely Bayesian perspective. The common dervations available
in the literature to date are more focussed on presenting the
Kalman filter as a MSE minimising filter. In this paper, we
show the analogy of the Bayesian filter with the Kalman filter
and present a detailed derivation for the latter. This derivation
is not formally available as an article. Hence it can be regarded
that this paper will be a good reading to obtain a deep Bayesian
view of the Kalman filter. We also presented the MATLAB
implementation and the simulation results for a simple 4-D
linear Gaussian example.



REFERENCES

[1] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan, “Es-
timation with applications to tracking and navigation: theory algorithms
and software,” John Wiley & Sons, 2004.

[2] R.P.S. Mahler, “Advances in statistical multisource-multitarget informa-
tion fusion,” Artech House, 2014.

[3] R.E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” ASME. J. Basic Eng., vol 82(1) pp. 35–45, 1960.

[4] Davey, Sam, Neil Gordon, Ian Holland, Mark Rutten, and Jason
Williams, “Bayesian Methods in the Search for MH370,” Springer
(Nature) Briefs in Electrical and Computer Engineering, 2016.

[5] B. Anderson, and John B. Moore, “Optimal filtering,” Courier Corpora-
tion, 2012.

[6] H. Sorenson, “Least-squares estimation: from Gauss to Kalman,” IEEE
spectrum, vol 7, no. 7 pp. 63–68, 1970.

[7] N. Shimkin, “Derivations of the Discrete-Time Kalman Filter,” Lecture
Notes, 2009.

[8] R. E. Kalman and R. S. Bucy, “New results in linear filtering and
prediction theory,” in Trans. ASME Ser. D, J. Basic Engineering, vol
83, pp. 95–107, 1961.

[9] R. E. Kalman, “New methods in Wiener filtering theory,” in Proc. 1st
Symp. on Engrg. Appl. of Random Function Theory and Probability,
1963.

[10] Anderson, Brian DO, and John B. Moore, “The Kalman-Bucy filter as a
true time-varying Wiener filter,” in IEEE Trans. on Systems, Man, and
Cybernetics, vol 2, pp. 119–128, 1971.

[11] T. Kailath, “The innovations approach to detection and estimation
theory,” Proc. of the IEEE, vol 58, no. 5, pp. 680–695, 1970.

[12] Hamed Masnadi-Shirazi, Alireza Masnadi-Shirazi, Mohammad-Amir
Dastgheib, “A Step by Step Mathematical Derivation and Tutorial on
Kalman Filters ,” arXiv:1910.03558v1, 2019.

[13] Yan-Xia Lin, “An alternative derivation of the Kalman filter using
the quasi-likelihood method,” Elsevier J. of Statistical Planning and
Inference, vol 137, no. 5, pp. 1627–1633, 2007.

[14] J. Humpherys, and Jeremy West, “Kalman filtering with Newton’s
method,” Proc. IEEE Control Systems Magazine, vol 30, no. 6, pp. 101–
106, 2010.

[15] P. Choppala, “Bayesian multiple target tracking,” PhD Thesis, Victoria
University of Wellington, New Zealand, 2014.

[16] N. Gordon, B. Ristic, and S. Arulampalam, “Beyond the Kalman filter:
Particle filters for tracking applications,” Artech House, 2004.


